HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data

نویسندگان

  • Yuhang Wang
  • Fillia Makedon
  • James C. Ford
  • Justin D. Pearlman
چکیده

MOTIVATION Recent studies have shown that microarray gene expression data are useful for phenotype classification of many diseases. A major problem in this classification is that the number of features (genes) greatly exceeds the number of instances (tissue samples). It has been shown that selecting a small set of informative genes can lead to improved classification accuracy. Many approaches have been proposed for this gene selection problem. Most of the previous gene ranking methods typically select 50-200 top-ranked genes and these genes are often highly correlated. Our goal is to select a small set of non-redundant marker genes that are most relevant for the classification task. RESULTS To achieve this goal, we developed a novel hybrid approach that combines gene ranking and clustering analysis. In this approach, we first applied feature filtering algorithms to select a set of top-ranked genes, and then applied hierarchical clustering on these genes to generate a dendrogram. Finally, the dendrogram was analyzed by a sweep-line algorithm and marker genes are selected by collapsing dense clusters. Empirical study using three public datasets shows that our approach is capable of selecting relatively few marker genes while offering the same or better leave-one-out cross-validation accuracy compared with approaches that use top-ranked genes directly for classification. AVAILABILITY The HykGene software is freely available at http://www.cs.dartmouth.edu/~wyh/software.htm CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary material is available from http://www.cs.dartmouth.edu/~wyh/hykgene/supplement/index.htm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HykGene: An Hybrid Approach for Selecting Marker Genes for Phenotype Classification using Microarray Gene Expression Data

Motivation: Recent studies have shown that microarray gene expression data is useful for phenotype classification of many diseases. In this classification problem, the number of features (genes) greatly exceeds the number of instances (tissue samples). It has been shown that selecting a small set of informative genes can lead to improved classification accuracy. Many approaches have been propos...

متن کامل

Identification of Alzheimer disease-relevant genes using a novel hybrid method

Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2005